Ma

Year 9 mathematics test

TIER

Paper 1

Calculator not allowed

First name \qquad

Last name \qquad
Class \qquad

Date \qquad

Please read this page, but do not open your booklet until your teacher tells you to start. Write your name, the name of your class and the date in the spaces above.

Remember:

- The test is 1 hour long.
- You must not use a calculator for any question in this test.
- You will need: pen, pencil, rubber and a ruler.
- Some formulae you might need are on page 2.
- This test starts with easier questions.
- Try to answer all the questions.
- Write all your answers and working on the test paper - do not use any rough paper. Marks may be awarded for working.
- Check your work carefully.
- Ask your teacher if you are not sure what to do.

For marking use only	Total marks	

Instructions

Answers
This means write down your answer or show your working and write down your answer.

Calculators

You must not use a calculator to answer any question in this test.

Formulae

You might need to use these formulae

Trapezium

Area $=\frac{1}{2}(a+b) h$

area of cross-section

Volume $=$ area of cross-section \times length

1. Look at the equation.

$$
14 n=98
$$

(a) Work out the value of $\mathbf{1 4 0 n}$
(b) Work out the value of $14(n+1)$
2. Look at the diagram.

$A B$ is a straight line.
Work out the size of angle k
\qquad
\circ
$k=$
3. Look at the sequence below.

To get the next term in the sequence, subtract 90 from the term before.
$500 \quad 410 \quad 320$

Write the first two terms of the sequence that are less than zero.

4. (a) Look at this information.

$$
x \leq 0
$$

Give an example of what the value of x could be.

Give a different example of what the value of x could be.
(b) Now look at this information.

$$
2 y+3 \leq 11
$$

What is the largest value that y could be?

\qquad
5. Each year a song contest is held in Europe.

The country with the greatest number of points wins.
The scatter graphs show information about the contest in 2007.

Position of the country in the contest

Position of the country in the contest

Use the graphs to answer these questions.
(a) About how many points did the winning country score?
\qquad
(b) How many countries scored fewer than $\mathbf{6 0}$ points?

\qquad
(c) What is the population of the country that scored 84 points?
\qquad million
6. The table shows information about a pentagonal prism.

	Pentagonal prism
Number of vertices	10
Number of rectangular faces	5
Total number of faces	7

Pentagonal prism
(a) Complete the table to show information about a triangular prism.

	Triangular prism
Number of vertices	\begin{tabular}{\|c
\hline	
\end{tabular}	
Number of rectangular faces	Total number of faces

(b) Complete the table.

Number of vertices	12	prism
Number of rectangular faces	6	
Total number of faces	8	10

7. Write numbers in the boxes so that the fractions are in size order.

8. (a) ladd the expressions \boldsymbol{n} and $\boldsymbol{n}+\mathbf{2}$

Put a ring round the expression that shows the result.
$2 n$
$4 n$
$n(n+2)$
$n^{2}+2$
$2 n+2$
(b) Now I multiply the expressions \boldsymbol{n} and $\boldsymbol{n}+\mathbf{2}$

Put a ring round the expression that shows the result.
$2 n$
$4 n$
$n(n+2)$
$n^{2}+2$
$2 n+2$
9. Jerry has a bag of counters.

Inside his bag are
2 blue,
4 green,
5 red, and
9 yellow counters

Jerry is going to take a counter at random from his bag.
Write the correct colours to complete these sentences.

The probability that it will be \qquad is 0.2

The probability that it will not be \qquad is $\frac{3}{4}$
$\overline{1 \text { mark }}$

The probability that it will be \qquad or \qquad is 70% \qquad
10. You can work out the approximate age of a tree if you know its diameter.

The graph shows information about three types of trees.

An American beech, a silver maple and a white oak all have the same diameter.
Complete these sentences.

The age of the American beech is about \qquad times the age of the silver maple.

The age of the American beech is about \qquad times the

1 mark
age of the white oak.
\square
11. (a) Eight small cubes of side length 1 cm are used to make a larger cube.

Complete the table to show the information for the larger cube.

Larger cube	
Volume	-
Surface area	
Total length of its edges	

\qquad
(b) One of the small cubes is removed to make this new shape.

Tick (\checkmark) the correct box in each row below.

	Has increased	Has stayed the same	Has decreased
Volume			
Surface area			
Total length of its edges			

12.

$$
\begin{aligned}
& (y+3) \text { is always } 5 \text { more than }(y-2) \\
& \text { so }(y+3)-(y-2)=5
\end{aligned}
$$

Complete the following.

$$
(y+4)-(y-3)=
$$

\qquad

1 mark

1 mark
13. (a) The graph shows two straight lines, A and B.

The equations of the lines are $y=3 x+2$ and $y=3(x+2)$
Tick (\checkmark) the equation for line \mathbf{A}.
\square $y=3 x+2$ \square $y=3(x+2)$

Explain how you know.
(b) Draw the straight lines with equations $y=2 x+2$ and $y=2(x+2)$ on the graph below.

14. Here are the first seven terms in three number sequences.

Powers of 2	Powers of 3	Powers of 4
2	3	4
4	9	16
8	27	64
16	81	256
32	243	1024
64	729	4096
128	2187	16384

Use the number sequences to work out the answers.

1 mark
\qquad
1 mark
$4^{6} \div 2^{12}=$ \qquad
15. (a) Multiply out the brackets, then write this expression as simply as possible.

$$
x(5-x)+4\left(x^{2}+1\right)
$$

(b) Factorise this expression.
$3 x-x^{2}$
\mathbb{V}
16. Write the missing fractions.

The first one is done for you, with diagrams to help.

For any number, x

Add half the number

Then subtract \qquad one third of the result.

The answer is x

For any number, y

Add one third of the number

Then subtract \qquad of the result.

The answer is y

For any number, t

Add two thirds of the number

Then subtract \qquad of the result.

The answer is t
17. (a) Here are the equations of four straight lines.
$y=6$
$y=2$
$x=3$
$x=4$

The intersections of these straight lines form the vertices of a rectangle.
What is the perimeter of this rectangle?

\qquad units
(b) The diagonals of the rectangle have these equations:

$$
\begin{aligned}
& y=4 x-10 \\
& y=-4 x+18
\end{aligned}
$$

Find where these lines intersect.
(\qquad
\qquad)
\square
18. Sam has two fair, six-sided dice. Both dice are numbered 1 to 6

He is going to throw the dice and add the scores.
(a) What is the probability that Sam will throw a total of 12 ?
(b) The chart shows the probability of different totals.

Write in the missing fractions to complete the diagram.

(c) Lisa also has two fair dice but hers are four-sided.

She is going to throw her dice and add the scores.
The chart shows the probability of different totals.

The same numbers are on both dice. What are the numbers?
\qquad
\qquad
\qquad
\qquad
1 mark
19. A bag contains coloured beads.

The table shows numbers and fractions of each colour.
Write the missing numbers and fractions in the table.

Colour	Number of beads	Fraction
Blue	12	
Red		$\frac{1}{12}$
Green	4	
Other		$\frac{1}{4}$

20. Look at the expressions in the shaded boxes.

Draw lines to match them to the expressions on the right.

21. A teacher has a set of ten cards numbered 1 to 10

She takes one of the cards at random but does not show it to the class.
(a) The teacher says:

The number on this card is an odd number.

What is the probability that the number is also a square number?

1 mark
(b) The teacher puts the card back, then again takes a card at random.

She says:

The number on this card is a square number.

What is the probability that the number is also an odd number?
22. This question is about right-angled triangles.

None of the diagrams are drawn accurately.
(a) The height of each triangle below is 2 cm .

Which two of these triangles are similar?

1 mark
(b) Triangles P and Q are similar to triangle F .

Write the missing dimensions.

23. Look at the right-angled triangle.

(a) Use Pythagoras' theorem to complete the equation below.

$(2+y)^{2}=$ \qquad
(b) Now work out the value of y

$$
y=
$$

\qquad

END OF TEST

